

Centre for Reproductive Health

Optimising male reproductive potential after childhood disease

Fertility preservation for boys and adolescent males with cancer

Rod Mitchell

Professor of Developmental Endocrinology Centre for Reproductive Health, University of Edinburgh

Consultant Paediatric Endocrinologist Royal Hospital for Children and Young People, Edinburgh

@RodTMitchell

Latvian Association of Obstetricians and Gynaecologists, Riga, May 2025

Most children with cancer will survive

~1:500 young adults is a survivor of childhood cancer

Current options for fertility preservation

Anderson RA* and Mitchell RT* et al. *The Lancet Diabetes and Endocrinology*. 2015

Testicular tissue cryopreservation

Preserve potential for fertility

Patient selection criteria

2014 'Edinburgh Criteria'

- Age 0-18 years
- Unable to produce a semen sample
- No testicular pathology
- High (>80%) risk of sub/infertility
 - High dose alkylating agents
 - Radiotherapy to pelvis
- Intention to cure
- Consent (parent +/- patient)

Testicular biopsy for fertility preservation

Images courtesy or Ans van Pelt, AMC Amsterdam

Testicular tissue cryopreservation in UK

ORCHID-NET consortium

ORCHID-NET consortium

Testicular tissue cryopreservation

Duffin et al. Human Reproduction Open. 2024

ORCHID-NET survey on fertility preservation in boys

Human Reproduction Open, 2024, 2024(2), hoae010

https://doi.org/10.1093/hropen/hoae010 Advance Access Publication Date: February 16, 2024 Original article

A 20-year overview of fertility preservation in boys: new insights gained through a comprehensive international survey

Kathleen Duffin (D^{1,†}, Nina Neuhaus (D^{2,†}, Claus Yding Andersen³, Virginie Barraud-Lange (D^{4,5}, Aude Braye⁶, Cristina Eguizabal (D^{7,8}, Aurélie Feraille (D⁹, Jill P. Ginsberg¹⁰, Debra Gook^{11,12}, Ellen Goossens (D⁶, Kirsi Jahnukainen^{13,14}, Yasmin Jayasinghe^{12,15}, Victoria Keros^{16,17}, Sabine Kliesch², Sheila Lane¹⁸, Callista L. Mulder (D^{19,20}, Kyle E. Orwig (D²¹, Ans M.M. van Pelt (D^{19,20}, Catherine Poirot (D^{22,23}, Michael P. Rimmer (D²⁴, Nathalie Rives (D⁹, Hooman Sadri-Ardekani (D^{25,26}, Myriam Safrai (D^{21,27}, Stefan Schlatt (D², Jan-Bernd Stukenborg (D¹³, Marianne D. van de Wetering²⁸, Christine Wyns (D²⁹, and Rod T. Mitchell (D^{24,30,*})

Fertility preservation in pubertal males

Testicular Sperm Extraction (TESE)

- General anaesthetic
- 3-5 cm scrotal incision
- 45 minute procedure
- Embryologist in theatre

Importance of urologist for FP in adolescents

BJU Int 2022; 130: 637-645 doi:10.1111/bju.15772

Original Article

The importance of the urologist in male oncology fertility preservation

Lionel A. Micol^{1,2,3} (D), Funmi Adenubi⁴, Elizabeth Williamson⁴, Sheila Lane⁵, Rod T. Mitchell⁶ and Philippa Sangster¹ (D)

¹Institute of Andrology and ⁴Reproductive Medicine Unit, University College London Hospitals NHS Foundation Trust, London, ⁵Children's Haematology and Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, ⁶Centre for Reproductive Health, Edinburgh Royal Hospital for Sick Children, The University of Edinburgh MRC, Edinburgh, UK, ²Urology, CHUV, and ³CPMA, Lausanne, Switzerland

Objectives

To demonstrate that surgical sperm retrieval (SSR) and spermatogonial stem cell retrieval (SSCR) in an oncological context are safe and successful.

Patients and Methods

This a retrospective study in a tertiary hospital in the UK. Patients requiring fertility preservation from December 2017 to January 2020 were included. Data were analysed with Microsoft Excel 2016 and the Statistical Package for the Social Sciences (version 20).

Results

Among 1264 patients referred to the Reproductive Medical Unit at the University College of London Hospitals for cryopreservation prior to gonadotoxic treatment, 39 chose to go forward with SSR/SSCR because they presented as azoo-/ cryopreservation or an inability to masturbate/ejaculate. Interventions were testicular sperm extraction (23 patients) or

- 1140 patients attended for semen cryopreservation
- 58 (5.1%) were unsuccessful
- 39 underwent SSR or testis biopsy
- Median age 15y (10-65y)

Success with SSR in patients with cancer

- 39 had SSR or testis biopsy
- Median age 15y (10-65y)
- Overall success 17/25 (68%)

Challenges for SSR in patients with cancer

- Time requires rapid referral and early intervention
- Availability of urologist, embryologist, facilities
- Capacity to consent
- No clear predictor of successful sperm retrieval
- Funding

Testicular transplantation to restore fertility?

Re-transplantation of testicular tissue/cells?

Spermatogonial stem cell transplantation

Spermatogonial stem cell transplantation

Brinster RL and Avarbock. PNAS. 1994 Kubota H and Brinster RL. Nat Clin Pract Endocrino Metabol. 2006

Transplantation of Rhesus monkey SSC produces functional sperm

Autotransplantation Embryos Sperm d5 morulae d7 blastocysts d7 hatching blastocyst

Hermann et al. Cell Stem Cell. 2012

SSC transplantation – clinical trials

1999

Fertility after treatment for cancer JA Radford, SM Shalet and BA Lieberman BMJ 1999;319;935-936

A clinical trial testing this hypothesis is currenuy under way in adults: 11 men have had testicular tissue harvested and cryopreserved as a single cell suspension (J A Radford et al, British Cancer Research meeting, Edinburgh, July 1999, and PF Brook et al, unpublished), and five who have now successfully completed treatment for cancer have had this material injected back into the donor testis. Results of follow up semen analysis are awaited with interest.

-

medRχiv

THE PREPRINT SERVER FOR HEALTH SCIENCES

Follow this preprint

Ultrasound-Guided Rete Testis Approach to Sperm Aspiration and Spermatogonial Stem Cell Transplantation in Patients with Azoospermia

2024

Image: Amanda Colvin Zielen, Karen A. Peters, Image: Gunapala Shetty, Deborah A. Gross, Image: Carol B. Hanna,
Serena L. Dovey, Anna Wecht, Glenn M. Cannon, Image: Marvin L. Meistrich, Image: Michael Hsieh,
Kathleen Hwang, Image: Kyle E. Orwig

doi: https://doi.org/10.1101/2025.03.25.25324518

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should *not* be used to guide clinical practice.

First SSC transplantation in childhood cancer survivor

Results are awaited!

SSC transplantation in human - challenges

- SSCs represent 1:3000 of the cells in the testis
- Propagation of SSCs may be required for natural fertility
- Isolation of SSCs may improve transplant efficiency but result in SSC loss
- Cannot distinguish sperm from endogenous or transplanted SSCs

Testicular tissue transplantation

Testicular tissue transplantation

Transplantation of prepubertal testicular tissue from monkeys into mice

Marmoset monkey transplants

Spermatogenesis occurs in intratesticular monkey testicular xenotransplants.

Intratesticular

Testis tissue xenotransplantation - challenges

- Most studies using human tissue rely on xenograft model
- Xenografts have so far failed to support complete human spermatogenesis
- Host animal environment may not be compatible with human spermatogenesis
- Clinical applications are likely to require **autotransplantation**

Fertility possible with testis tissue autotransplant

Testicular tissue transplantation – clinical trials

Contact

HOME ABOUT TEAM THESES RESEARCH PUBLICATIONS • PROJECTS • FUNDING NEWS & CONTACT EVENTS

VUB BIOLOGY OF THE TESTIS RESEARCH GROUP

GROUNDBREAKING TESTICULAR TISSUE TRANSPLANT ACHIEVED AT THE UNIVERSITY MEDICAL CENTER

FRIDAY 10/01/2025

https://bite.research.vub.be/groundbreaking-testicular-tissue-transplant-achieved-at-the-university-medical-center

Testicular tissue transplantation – clinical trials

Ethical approval obtained 2023

Eligibility

- ≥18yrs
- Testicular tissue stored
- Evidence of infertility e.g. azoospermia

Autotransplantation of human testis tissue/cells

Title: Is the time right for transplanting immature testicular tissue or cells to restore male fertility?

Expert perspectives on clinical implementation of autotransplantation of cryopreserved testicular tissue or cells for fertility restoration

Authors:

Myriam Safrai¹, Ellen Goossens², Rod Mitchell^{3,4#}, Kyle E. Orwig⁵, Callista L. Mulder^{6,7}, Ans M. M. van Pelt^{6,7}, Debra A Gook^{8,9}, Aurélie Feraille¹⁰, Emily Delgouffe², Jill P. Ginsberg¹¹, Jan-Bernd Stukenborg^{12,13}, Kathleen Duffin^{3,4}, Kirsi Jahnukainen^{12,14}, Claus Yding Andersen¹⁵, Marianne D. van de Wetering¹⁶, Michael P. Rimmer³, Virginie Barraud-Lange^{17,18}, Nina Neuhaus¹⁹, Sheila Lane²⁰, Hooman Sadri-Ardekani²¹ Nathalie Rives^{10*#}, Christine Wyns^{22*#}

Acknowledgements

Mitchell Group Marsida Hutka Kathleen Duffin Grace Forsyth Mike Rimmer

Abi Lewis Michaela Rodger Emma Kearney **Oxford** Sheila Lane Christian Becker Jill Davies

UCL Pippa Sangster

Munster Nina Neuhaus Stefan Schlatt

Brussels Ellen Goossens Elisavet Ntemou

Richard Anderson Mark Brougham Phil Hammond Michael Jacovides Norah Spears CJ Shukla Aleks Mozdzynska Anna-Maria Ewins Alison Spence Hamish Wallace Evelyn Telfer Sharon Zahra

